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Nonlinear Control of Flexible, Articulated Spacecraft:
Application to Space Station/Mobile Manipulator
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This paper extends the authors' prior work on the attitude control of flexible space structures via partial
feedback linearization methods to articulated systems. Recursive relations introduced by Jain and Rodriguez are
central to the efficient formulation of models via Poincare's form of Lagrange's equations. Such models provide
for easy construction of feedback linearizing control laws. Adaptation is shown to be an effective way of
reducing sensitivity to uncertain parameters. An application to a flexible platform with mobile remote manipu-
lator system is highlighted.

I. Introduction

O UR goal is to demonstrate the application of recent inno-
vations for modeling and control of articulated systems

to a spacecraft configuration representative of Space Station
Freedom with a mobile remote manipulator system (SSF/
MRMS). The problem considered is the attitude regulation of
the space station while the MRMS undergoes arbitrary pre-
scribed maneuvers. The issue of attitude control for such a
configuration has received attention in the literature, most
notably in the papers of Mah et al.1 and Wie et al.,2 in which
linear controllers are applied and various stability problems
are noted. Such systems are inherently nonlinear, and this
raises questions both with respect to modeling, especially when
flexibility is present, and with respect to control system design.

The methods considered here address the essential nonlin-
earity of these systems directly. A unified approach to model-
ing and nonlinear control system design is employed. In recent
work, including Ref. 3, we considered the design of feedback
linearizing controls for multibody, flexible, but nonarticu-
lated, spacecraft in connection with the NASA/IEEE Space-
craft Controls Laboratory Experiment (SCOLE) problem.
Here we extend those methods to articulated systems. In Sees.
II and III we develop the formulation of Poincare's equations
for articulated systems with rigid and flexible bodies using
the recursive constructions of Rodriguez,4 Jain,5 and Jain and
Rodriguez.6 In Sec. IV we derive the feedback linearizing atti-
tude control laws for this general class of systems. Nonadap-
tive and adaptive controls are described. We apply these results
to the SSF/MRMS configuration in Sec. V.

The space station attitude control issues addressed here are
related to the attitude control problems defined by Mah et al.1
and Wie et al.2 except that we focus on the short time-scale
problem (time scale of minutes) associated with MRMS mo-
tion, whereas in the aforementioned works MRMS induced
disturbances are considered, however, primarily in terms of
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their effect on long-term behavior (time scale of orbits). In the
latter case the important questions have to do with the ability
of the attitude regulator to reject long-term periodic distur-
bances due to environmental torques including gravity gradi-
ent torque and cyclic aerodynamic torques. Both Refs. 1 and
2 outline the potential benefits of linear quadratic Gaussian
design for this controller. They also show the sensitivity of
attitude control performance to MRMS motion. In fact, Wie
et al.2 show that large MRMS motion can destabilize the atti-
tude control system because of changes in the system inertia
and suggest the need for gain scheduling of linear controllers.
Since we focus on the short time scale, we do not include
environment (orbital frequency) disturbance torques in our
analysis.

We show that the stabilization issues are far more subtle
and critical than suggested in either Refs. 1 or 2. The nonlin-
ear inertial cross couplings, especially when platform flexibil-
ity is considered, severely limit the achievable performance
with linear regulators. Because the associated dynamics are
nonlinear in an essential way, we consider nonlinear control
design using partial feedback linearization. This method effec-
tively cancels certain nonlinearities and, hence, there arise im-
portant robustness issues. As a result adaptation is considered
to be an important adjunct to this class of controllers. The
results in this paper extends those of Ref. 3 to a larger class
of systems modeled in terms of Poincare's equations. We give
an explicit characterization of the zero dynamics for this class
of problems.

II. Lagrange's Equations and Quasivelocities
Our approach to multiflex-body modeling is based on the

Lagrangian framework for distributed system dynamics. The
Lagrangian dynamics are conveniently formulated using
quasivelocities7'9 that result in a system of equations often
called Poincare's equations. The method has been further de-
veloped using finite element analysis for reduction to finite
dimensions and the recursive constructions introduced in Refs.
4-6 for serial chains of articulating bodies. The resultant equa-
tions are convenient for analysis, computation, and control
system design.

A. Hamilton's Principle and the Euler-Lagrange Equations
The formalism of Lagrangian dynamics begins with the

identification of the configuration space, i.e., the generalized
coordinates, associated with the dynamical system of interest.
Once the configuration manifold M is specified, there follows
the natural definition of velocity at a point q € Mas an element
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q in the tangent space to Mat q, often denoted TqM. The state
space is defined as the union of tangent spaces at all points
q € M, the so-called tangent bundle TM. The evolution of the
system in the state space is characterized by the definition of a
Lagrangian £(q, q): TM-+(R and use of Hamilton's principle
of least action. The motion of a dynamical system between
times ti and t2 is a "natural" motion if and only if

=0 (1)

The variational statement (1) leads to the d'Alembert-La-
grange equation,7'10'11

d d£ d£
(2)

If the coordinate variations 5q are independent, then Eq. (2)
yields the Euler-Lagrange equations

d d£ _ d£
dt~Mj ~ "dq (3)

In the usual case we have <£(#, q) = 3(q, q)-'V(q), where 3
and "V are the kinetic energy and potential energy functions,
respectively.

In the event that the coordinates variations dq are con-
strained, then the d'Alembert-Lagrange equation (2) can be
used to derive alternatives to the Euler-Lagrange equations
(this is usually accomplished via Maggi's equations,11 which
provide one route to Kane's equations12). This is the basis for
the analytical mechanics of nonholonomic systems, for exam-
ple, see Ref. 11.

B. Quasi velocities and Alternate Equations of Motion
It is well known that in some cases it is easier to formulate

the equations of motion in terms of velocity variables that
cannot be expressed as the time derivatives of any correspond-
ing configuration coordinates. Such velocities are called quasi-
velocities. Quasivelocities are meaningful physical quanti-
ties—the angular velocity of a rigid body is a prime example.
The notion of quasivelocities leads to a generalization of La-
grange's equations that is applicable to systems with nonholo-
nomic as well as holonomic constraints. Such generalizations
were produced at the turn of the century (see, for example,
Refs. 7 and 11). A currently popular formulation is due to
Kane and Levinson.13

Let M be the m -dimensional configuration manifold for a
Lagrangian system and suppose V i , . . . , vm constitute a system
of m linearly independent vector fields on M. Then each com-
mutator of pairs of vector fields can be expressed

X)

Indeed, the coefficients are easily computed. Define

(4)

v 2 . . .v m ] , U = = V

Then Eq. (4) yields

or

(5)

(6)

Suppose q(t) : [ t i , t2]-+M is a smooth path; then q(t) de-
notes the tangent vector to the path at the point q(t) €M.

Thus, we can always express q as a linear combination of the
tangent vectors v/, / = 1,..., m

where

q=V(q)p

P = U(q)q

(7)

(8)

The variables p are called quasivelocities. Since these quanti-
ties are "velocities" we may associate them with a set of coor-
dinates TT, in the sense that TT =/?. Although TT is well defined by
this differential equation, its elements may not be true coordi-
nates in the sense that there may not exist any function H(q)
such that 7r = n(#). This follows from the observation that in
view of Eq. (8) we must have

= U(q) dq (9)

but the right-hand side (of each STT/) may not be an exact
differential—necessary conditions for the existance of !!(<?).
Hence, the variables TT are referred to as quasicoordinates.

It is always possible to write the Lagrangian in terms of q
and p. Set £(#,/? ) = <£(</, q). In terms of £ Lagrange's equa-
tions are attainable in the form given by the following lemma.

Proposition 1: Hamilton's principles leads to the equa-
tions of motion in terms of the coordinates qtp

or, equivalently,

where

(10)

(11)

= [Vi V2 vm]

and

j = [[y/, vi] [y/, v 2 ] . . . [y/, vm]]

A proof of the proposition as stated here is given in Ref. 7.
Alternate derivations may be found in Refs. 8, 9, and 11.

Remarks: 1) In the literature these equations are referred
to as Lagrange's equations in quasicoordinates9 and also as
Poincare's equations, e.g., Refs. 7 and 8. Arnold et al.7 at-
tributes them to Poincare circa 1901, and they were referred to
as Poincare's equations as early as 1941 by Chetaev.14 They are
related to Caplygin's equations, to the Boltzman-Hamel equa-
tions,11 and also to the generalized Lagrange equations of No-
ble (see Ref. 15).

2) Poincare's equations (11) along with Eq. (8) form a
closed system of first-order differential equations that may be
written in the form

* = V(q)p

dp

(12a)

(12b)

3) In what follows, we describe the assembly of V(q) and
> ) for articulated structures.

III. Modeling of Articulated Spacecraft
Systematic methods for the formulation of the equations of

motion for complex mechanical systems are now receiving
considerable attention. Although there are important histori-
cal precedents, the investigations most relevant to us are those



40 BENNETT, KWATNY, AND BAEK: NONLINEAR CONTROL

of Refs. 4-6 where certain recursive techniques for rigid body
systems and also for systems with flexible elements have been
formulated. In the following paragraphs we will review the
necessary concepts and explain how they are integrated into
the Lagrangian framework. The key issue is the formulation of
the kinetic energy function, and we focus on that construction.

A. Algorithmic Methods for Serial Chains of Rigid Bodies
We adopt the convention, by which any vector a 6 (R3 is

converted into a skew-symmetric matrix a (a)

a ( a ) =
0 - #3 tf2

#3 0 -#

- a2 # 1 0

(13)

just as is commonly done for angular velocity.
Suppose C is any point fixed in a rigid body. The spatial

velocity at point C of any body-fixed reference frame with
origin at point C is defined in Refs. 4-6 as Vc = [co,vc] where
vc is the velocity of point C and co is the angular velocity of the
body. Let O be another point in the same body, and let rco
denote the location of C in the body frame with origin at O.
Then the spatial velocity at point C is related to that at O by
the relation

where

and its adjoint

Vc = <t>(rco)V0

-K-1 /I<t>(rco) =

(14)

(15a)

(15b)

1. Serial Chains of Rigid Bodies
Now, let us consider a serial chain composed of K + 1 rigid

bodies connected by joints as illustrated in Fig. 1. The bodies
are numbered 0 through K, with 0 denoting the base or ref-
erence body, which may represent any convenient inertial re-
ference frame. The A:th joint connects body k - 1 at the point
Cfr_ i with body k at the point Ok. Let 3rk denote a reference
frame fixed in body k with origin at Ok. The symbol rk

0
denotes the vector from Ok to Ck in 3fk, and rk denotes the
vector from Ok to Ok+i in $k. We will use a coordinate spe-
cific notation in which vectors represented in $' (or its tan-
gent space) will be identified with a superscript /. Coordinate
free relations carry no superscript. The A:th joint has nk,

joint K

Frame

Fig. 1 Serial chain composed of K +1 rigid bodies Q-K and K joints
l-/^; on an arbitrary A th link the inboard and outboard joint hinge
points are designated Ok and Ck, the body fixed reference frame $k

has its origin at Ok.

1 <nk <6 degrees of freedom, which can be characterized by
nk quasivelocities (3(k) and a joint map matrix H(k) £ (R6***
so that V0k-VCk_l=H(k)^(k).

Let the joint configuration parameters be denoted by ok
€ (Rnk. Then the configuration rates ok are related to the quasi-
velocities by a relation

(16)

The joint rotation matrix that defines the relative orientation
of $k with respect to <5k~ l can be realized as a function of ak,
which we denote Lktk_i(ok).

Rodriguez,4 Jain,5 and Rodriguez and Jain6 establish the
recursive velocity relation, which we write in coordinate spe-
cific notation

V\k) = </> [rl
co (k - 1)] V\k - 1) + (17)

Let us assume that H(k) and $(k) are specified in the frame
9* and V(k - 1) has been computed in the frame 3*-1. Then
it is convenient to compute V(k) in the kih frame

(18)Hk(k)/3k(k)

If F°(0) is given, then Eq. (18) allows us to compute recur-
sively, for k = \9...9K the linear velocity of the origin of $k

and the angular velocity of 5 ,̂ both represented in the coordi-
nates of $k. In what follows we take K°(0) = 0. Abusing nota-
tion somewhat, it is convenient to define

«(*, * - 1) = diag(Z*-lf,, Lk-ltk)4>[r*il(k ~ 1)] (19)

so that Eq. (18) can be written

Vk(k) = <t>(k,k- \)Vk~l(k - 1) + Hk(k)(3k(k)

k = l,...,k, F°(0) = 0 (20)

It is necessary to define a spatial inertia tensor as well. Con-
sider the A:th rigid link and let Icm(k) denote the inertia tensor
about the center of mass in coordinates $k, m(k) denote the
mass, and a (k) denote the position vector from the center of
mass to an arbitrary point O . The spatial inertia about the
center of mass Mcm and about O , M0 are

Mcm(k) = /cm 0

0 ml

I0 ma
-ma ml (21)

where I0 is the inertia tensor about O .
The spatial velocity and spatial inertia matrix and, hence,

the kinetic energy function for the entire chain can now be
conveniently constructed. Let us define the chain spatial veloc-
ity and joint quasivelocity

(22)

(23)

so that we can write

V =

where

/ 0
0(2,1) /
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H =

H(\) 0
0 H(2)

0 0

(24)

The kinetic energy function for the chain consisting of links
l-A'is

K.E.chain=>/2/3'31l/5

where the chain inertia matrix is

(25)

git = H***M*H, M = diag [M0(l),... ,M0(K)] (26)

2. Sliding Joint-Rigid Body Case
We define a sliding joint to be a one degree of freedom

relative motion between two bodies involving translation along
a path defined in one of the bodies. In general, this means
that the joint map matrix may be a function of the joint
configuration variables. Consider constrained relative mo-
tion between two bodies k and k — 1 in which body k is free
to translate along a path & defined in rigid body k — I . The
path (P can be characterized by a map 7: (R-»(R3, so that
P = {T(e)l e0<e<ei) • Specification of e(t) defines the motion
of ap € (P via the composite relation y[e(t)]. It is convenient
to think of the point p as defining a (moving) point Ck-\ in
body k — \ and a (fixed) point Ok in body k. The relative
velocity of a point /? moving along p with respect to the body
frame 3*'-* is

(27)

(28)

The inertial velocity of p as measured in 3r/:~1 is

de

Suppose ^k is a reference frame in body k with origin at Ok
(p). We assume that the angular orientation of $k relative to
JF*"1 remains constant with the corresponding axes of $k and
5^- l aligned. This is only a matter of convenience because any
joint involving both translation and rotation can be decom-
posed into two joints, one involving pure translation and a
second involving pure rotation. We may take e to be the single
translational quasivelocity [&(k) = e] so that the spatial veloc-
ity takes the form

Vk(k) =

Hk(k) =
0 3xl

dy
de

Hk(k)/3k(k) (29)

(30)f3k(k) = e

As an example, suppose the path p is a segment of the z axis
in 3*-1. Then

Hk(k) =

B. Serial Chains of Flexible Bodies
The procedure can be modified for flexible links. Let the

reference frame <5k, with origin at Ok, be so oriented that its z

axis passes through Ck in the undeformed configuration. We
assume that each link is a one-dimensional, beam-like, flexible
body and that the deformable centerline is coincident with the
z axis of *5k in the undeformed configuration. The beam equa-
tions will be written in the frame *5k. Because the link is no
longer a rigid body it does not make sense to have $F* a body
fixed frame. Instead, we attach $k to the body by requiring
cantilever beam boundary conditions at z = 0. In other words,
Sk may be thought of as fixed in an infinitesimal element at
Ok. Figure 2 illustrates the A:th body in the undeformed and
deformed configurations. We assume that deformations are
small. Let Fk be a second reference frame with origin at Ck and
aligned with <5k in the undeformed configuration. The orienta-
tion of Fk under deformation is defined by fixing Fk in an
infinitesimal element at Q, i.e., the location of its origin in ̂ k

is rjk(zc) and its relative angular orientation with respect to <5k

is £*(zc).
Now, notice that

Vk(k) = k. l f j f e ) Vk~ l (k -

(3 la)

- Hk(k)$k(k)
(31b)

where Lk>k_i retains the meaning of the rigid body case, i.e.,
it is the rotation matrix that characterizes the relative orienta-
tion of the frame $k with respect to 3rk-1. Likewise, the joint
operator H(k) and quasivelocity @(k) retain their prior mean-
ing. There is, however, a subtle distinction in the computation
of Lfc,*-i in the present case vis-a-vis the rigid-body case. As
before, the joint configuration variables are obtained from the
differential equations

Then the rotation matrix is

(32)

(33)

Suppose that a finite-dimensional model is obtained for
each flexible body via finite element analysis (e.g., Ref. 3) so
that the kih link is approximated with Nk elements and, hence,
Nk + l nodes numbered 0, 1, . . . , Nk. We assume that node 0
coincides with the point O. Furthermore, each node may have
as many as three displacements and three rotational degrees of
freedom. Then the link deformations in 5^ are described by

:(0 (34)

The relative (that is, with respect to the frame 5F*) spatial
velocity associated with an infinitesimal element located at an
arbitrary z in the undeformed configuration is

(35)

deformed body
undeformed body

Fig. 2 Characterization of the path (P in terms of a parameter e.
Since a deformation of the body deforms the path, (P is defined by a
map that depends on both the deformation (a function) and the pa-
rameter (a scalar).
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where the columns of [vi(k), . . . ,vNk(k)] are the nodal spatial
velocities, in particular, at node / (z =z/) we use the notation

Vi(k) = *?"!! = !' » / = !,...,**, i;0(*) = 0 (36)h(*/.oj LI?/J
Now, we can combine Eqs. (31) and (35) to obtain the recur-

sive formula

+

where

(37)

Since F0°(0) = 0, we can again compute all velocities Vk+l(k
+ 1) in terms of u and /3. It is convenient to again use stacked
notation and define v(k) = [v{(k)9... ,u^(A:)]' and to adjoin to
Eq. (37) the identity v(k) = v(k). In this way, we construct the
recursive formula

'<£(£ + !,£) A(£ + l,A:)~|rF0(A:)~|
0 0 J L V ( k ) \

p/(* + l) ^[^Hjj (38a)

l , A r ) = &3iB(Lktk+1,Lktk+l)<l>[rik(Zc)] (38b)

(38c)

' / / 6 x 6 , . . . , 0 6 x 6 ]

Thus, if point Ck is fixed judiciously at one of the node points
the matrix X simplifies. Finally, let us define the nodal spatial
velocity vector V(k) and the nodal quasi velocity vector ir(k)
for the kth body

X [*i(Zc)/6x6*2/6x6, • • • ,*Ak/6x6]

Notice that if zc = Zt, / = 1,.. . , Nk, then

\(k + !,£) = diag(L*fjt+1, /,*,*+ i)[06x6,.

*(*) = (39)

which allows us to write the recursion (38a) in the form.

l) + H(k)v(k)
= l,...,K, K(0) = (40)

The similarity to the rigid case is obvious.
As in the rigid case, our goal is to construct the spatial

velocity vector and the kinetic energy function for the entire
chain. Let us define the chain spatial velocity and quasivelocity

V = [F'(l), . . . , V'(K)] ', IT = [T< (1), . . . , *'(K)] ' (41)

so that we can write

V = 3>Hir (42)

where

/
0(2,1)

*(*,!)

0
/

«*,?)

... o

... o

... 7

H =

H(l) 0 ... 0
0 H(2) ". 0

0 0 H(K)

(43)

i ,y ) = «(/, / -l),... ,«(y + 1,7)

We assume that the kinetic energy for each link has been
constructed (via finite element reduction) in the form

(44)

Then the kinetic energy function for the chain consisting of
links l-K is

K.E.chain=

where the chain inertia matrix is

= H*$*M$H, M = diag [M0 (1), . . . ,M 0

(45)

(46)

7. Sliding Joints /Flexible-Body Case
In a manner similar to the rigid case, we consider rela-

tive motion between two bodies k and k - 1 in which body
k translates along a path (P defined in body k — 1. Let X de-
note the function space of deformations of body k — l. Then
the path (P may be characterized by a map y:Xx (R-» (R3, so
that (P={7(r/, ^ ,e) € ( )<€<€! and hU,0,€U,01 €^r}, see
Fig. 2. In the undeformed configuration the path (P is defined
by the map 7(0, 0, e). When the deformations are approxi-
mated by a finite element model, as described earlier, then the
path (P is approximated by a map 7(7), f, e). Once again, we
consider a reference frame fixed in body A:, 5 ,̂ with origin
moving with the point p . Unlike the rigid case, it is convenient
to specify the relative orientation of 5^ with respect to $k- l in
a more general way. The relative angular alignment of $k with
respect to 9F*- l is defined in terms of the location of/? and the
deformations via a function ^(17, £, e) or its approximation
£0?> I* 0-

The relative velocity of a point /? traversing the path with
respect to the body frame ^k~l is

. dy dy .
*^p \ **• •*• / t' j . » \ _ V v ' / • < ^ v * a V - " ' / ' ^d/^ 017 d£ ae

The inertial velocity of p as measured in ^k~l is
.N/V ^/<

/, ix , 5T - , ^

(47)

Let us define

T(k-l)=[Tl,...tTNk_l], where r, = | g- ^r

so that

(48)

(49)

- l)v(k -!) + —— €

(50)

If we assume small deformations the relative angular velocity
of 5k with respect to ^k~l as measured in $k~l is

dt dj I V ' d|

Let us define

A(/:-l)= [AI ... AAT^J, where A / = | ^~

so that

(51)

^ (52)

(53)
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V*(k) =

We may take e to be the single translational quasivelocity
) = e] so that the spatial velocity takes the form

(54)

(55)Hk(k) = di

To complete the correlation with Eq. (38a), we need only
identify

|, e))

F(* -1)

(56)

As an example, suppose the path (P corresponds to a segment
of the z axis in JF*"1 so that

In addition, suppose that the relative angular orientation of
SF* with respect to JF*"1 is precisely the angular deformation
of body k - 1 at p

The relative linear and angular velocities of SF* with respect to
SF*"1 are (represented in the SF*"1 frame)

„*--*

If longitudinal deformations are neglected, i.e., r/3 = z, we ob-
tain the further reduction

TO?, I, <0 =
Ade

Ade
1

2. Remark on Finite Element Reduction
One approach to finite element reduction is based on collo-

cation by splines. Our implementation of this method is de-
scribed in Ref. 3. It is simple and convenient for the class of
models of interest here.

3. Remark on the Structure of Poincare's Equations
The preceding definitions and constructions provide the ki-

netic energy function in the form ^(q9p)=pt^fl(q)p (TT re-
places p in the flexible case). Hence, we reduce Eq. (12b) to the
form

Q(q,p)p = Qp (57a)

where

QP = (57c)

Notice that Qp denotes the generalized forces represented in
the p -coordinate frame whereas Q denotes the generalized
forces in the ^-coordinate frame (aligned with q). Qpis actu-
ally more convenient because the quasivelocities are usually
represented in appropriate body frames.

4. Remark on Taylor Linearization
If Qp is constant, it makes sense to discuss equilibria of the

system defined by Eqs. (12a) and (57a). An equilibrium point
is defined as a value of the state (#,/?) such that # = 0 and
p = 0. From Eq. (12a) and the invertibility of V(q) we find that
p =0 at an equilibrium point. An equilibrium value of q then
satisfies $(q) = Qp. For convenience, let the equilibrium point
of interest correspond to q = 0. A straightforward computa-
tion shows that the Taylor linearized dynamics are

q = K(0)p

9fn(0)p 4- 6(0,0);? + — (0)0 =
dq

(58a)

(58b)

IV. Nonlinear Attitude Control via
Partial Feedback Linearizing

The approach to attitude control design considered here
derives from a well-established theoretical basis for control
design by feedback linearization.16 In recent work, including
Ref. 3, we have tailored this technique to take advantage of the
special structure of Lagrangian dynamics.

A. Partial Feedback Linearizing Control
The spacecraft models just formulated reduce to dynamical

equations of the form

, t)p , 0 = Gr

(59a)

(59b)

where q are a set of generalized coordinates and p a set of
quasivelocities. The class of attitude control problems we in-
vestigate is best characterized by partitioning the coordinate
vector, and correspondingly the quasivelocity vector, into two
parts

-la- p = (60)

where £ represents the controlled body attitude parameters and
a? the corresponding body angular velocity, whereas u and v
represent the remaining coordinates and velocities, respec-
tively. Then in partitioned form, the equations are

(61a)

(61b)

TVv (61c)

(61d)

Our goal is to regulate the outputs y = £. The concept of
partial feedback linearization (PFL) is a general approach to
the design of nonlinear control systems for a general class of
systems with smooth nonlinearities.16 Attitude control of
spacecraft using feedback linearization was first used by
Dwyer.17 A PFL compensation for the system (61) is a nonlin-
ear feedback law of the form

(57b) (62)
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which provides a closed-loop attitude response in the linear,
decoupled form

£ = a (63)

Specific conditions for the existence and construction of such
controllers are given in Isidori.16 Here we extend the discussion
in Ref. 3 on the construction of PFL controllers for spacecraft
modeled by Poincare's equations.

The main constructive result is summarized in the following
proposition.

Proposition 1: The PFL control for regulation of the out-
puts y = £ for the system defined by Eq. (61) takes the form of
Eq. (62) with

= [Gtt -

(64)

Tco

(B=

Proof: We prove the proposition by direct construction,
in two steps. First, we use linearizing feedback to reduce
Eq. (61c) to the form co = /3, which we then reduce to Eq. (63)
by a second linearizing feedback. The composition of these to
control laws gives the desired result. Equation (6 Id) can be
solved for v

v = -M~INTU-M-IFV+M-IGVT
which allows its elimination from Eq. (61c)

[Ma-NM-iN^u + Fv-NM^Fv = [G0 - NM~ l Gv] r

Now we choose the feedback control law

T= [Ga-NM-lGv]-l[Fu-NM-lFv

which yields

cb = J3

Now, differentiation of Eq. (61a) provides

Choose the control law

to obtain

and the desired composite linearizing control law is

T= [GU-NM-1GV]~1\F0-NM-1FV

which is the stated result. §
Remarks: 1) The linearizing control law is local if the

parameterization of the angular configuration is local. How-
ever, there is some flexibility here because one may choose
alternate parameterizations (e.g., Gibbs or Euler parameters),
as appropriate to the problem.

2) The zero dynamics16 are obtained by straightforward cal-
culation

with £ = 0 and co = 0.
3) In the specific problem of interest here we have Gw = 73

and Gv = 0, so that Eq. (64) simplifies somewhat to

a (65a)

(65b)

= FW - NM- IFV + [NM- l NT- Mj r - l ̂  r^ j

(B = [Mu - NM- 1NT] r - l

In this case the zero dynamics reduce to

Mvv + Fv = 0

with £ = 0 and co = 0.
4) The invertibility of Mv is assured because it is an inertia

matrix for a physical subsystem and is consequently a positive
definite matrix.

5) If Gibbs parameters are used for attitude parameteriza-
tion, then the last term in Eq. (64a) or (65 a) simplifies because

r-1 — - rco = 77coo>
dx

where 7 is the vector of Gibbs parameters.
6) Equation (63) may be rewritten

= L J > B = \ r \L° °J Vh\
we may easily choose a stabilizing control for Eq. (63)

a = KpH+Krk=Kz (66b)

B. Adaptive Partial Feedback Linearizing Control
Because feedback linearization is a model-based approach to

control system design, it is necessary to anticipate some sensi-
tivity to model uncertainty. In the present case, it is reasonable
to assume that the kinematics are precisely known but that the
dynamics are not. Thus, we consider the situation where the
model contains uncertain parameters, denoted 9, which be-
long to a bounded set $. Equations (61) may be rewritten with
these parameters explicitly shown

N(Q)v + Ftt(0) = G.r

(9)v + Fv(0) = Gv r

(67a)

(67b)

Because of its physical meaning, the invertibility of Mv(0) is
preserved for all values of 0 € $. Consequently, a feedback
linearizing control exists for all parameter values. Indeed, the
control (62) as constructed via proposition 1 is a parameter
dependent control, which we rewrite in the form

r(0) = (68)

The idea is to implement Eq. (68) with 5J replaced by an esti-
mate 3. When the estimated control r(5) is applied, the system

Flexible Platform

Primary Body Frame
Gripper

Fig. 3 Considered system composed of a flexible platform, a mobile
base, and the flexible upper and lower arms; for the purposes of the
present study the gripper and payload are assumed fixed to the lower
arm, i.e., the "wrist" is locked.
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is not exactly feedback linearized, and a simple computation
shows that Eq. (63) is replaced by

(69)

The following proposition provides a parameter adaptive feed-
back linearizing control law.

Proposition 2: Consider the system defined by Eq. (61)
and with control r(5) where r(-) is given by Eq. (68) and o: by
Eq. (66b). Suppose that the residual A defined in Eq. (69) has
the form

- 9) (70)

—0) is achievedThen asymptotic attitude stabilization
with the parameter estimator

(71)

where P is a symmetric, positive definite solution of

(A + BKY + P(A + BK) = - / (72)

and Q is any symmetric, positive definite marix. Various forms
of this result are well known, e.g., Ref. 18.

V. Summary of Simulation Results
for Space Station Freedom/Mobile Remote

Manipulator System
In the following paragraphs we describe simulation results

that compare linear and nonlinear (PFL) controllers for atti-
tude control of a prototype space station. Prior to consider-
ation of a flexible platform, studies were conducted with a
rigid platform. Although not reported here occasional com-
parative remarks will be made to the rigid case. The flexible
platform case is far more complex than the rigid case in three
respects: 1) the dynamical equations of motion are more in-
volved, and this complexity increases the simulation times sub-
stantially; 2) the numerical analysis is much more subtle be-
cause there is substantial time scale separation due to fast
platform vibration dynamics; and 3) the system dynamics are
far more complicated with nonlinear inertial couplings be-
tween flexible and rigid body dynamics profoundly affecting
system behavior.

A. System Configuration
The space station with MRMS is idealized to be composed

of four articulated elements: the space station main body
(body 1), the MRMS base (body 2), the upper (inner) MRMS
arm (body 3), and the lower (outer) MRMS arm (body 4). It
is assumed that the MRMS base, body 2, can move along a
fixed path on the space station, body 1, whereas body 3 is
joined to body 2 and body 4 to body 3 via joints with up to
three rotational degrees of freedom. The setup is illustrated in

Fig. 3. We develop the explicit model for the case where the
MRMS joints are restricted to one degree of freedom. Suppose
that joint 3 admits only rotations about the z axis in the JF3

frame and joint 4 about the x axis in the *54 frame.
The configuration variables are as follows.
1) R € (R3, the location of point O\ on body 1 relative to

inertial space.
2) LI €SO(3), the relative angular orientation of $l with

respect to inertial space.
3) li € (R3, rjf € (R2, / = 1,... ,N( = 2) platform angular and

displacement deformation coordinates.
4) f € (R, the location of the MRMS base along the unde-

formed track in the frame ff1 .
5) 1/̂ 2 £ (R, the relative angular orientation of 3r3 with re-

spect to 3r2.
6) </>43 € (R, the relative angular orientation of ^4 with re-

spect to 3r3.
The joint quasivelocities are /3(1) = («i 9v\) the linear velocity

Vi and the angular velocity coi of SF1; the linear velocity /3(2)
= v2z for joint 2; and the relative angular velocities /3(3) = co32
and /3(4) = co43 for joints 3 and 4.

Table 1 provides the physical data used in the simulation
studies. This data is adapted from Ref. 1. Since only the
weight and length of the beam have been specified, we as-
sume the geometry and the material properties as follows.
The geometry of the beam is a uniform, square boxbeam
with outside dimension of 5 m. Material properties are density
p = 7.860 x 103 kg/m3, modulus of elasticity E = 200 x 108 N/
m2, and shear modulus G =19 x 108 N/m2. All of the plat-
form characteristics except dissipation properties follow from
these assumptions. A material dissipation model of the type
described in Ref. 3 is assumed. In addition, we assume some
form of active or passive vibration suppression provides
additional damping. Even so, the dominant modes of the
structure are very lightly damped as will be seen in the simula-
tion results.

The beam model is developed in accordance with the finite
element method described in Ref. 3, using collocation by
splines as applied to a Timoshenko formulation of beam dy-
namics precisely as employed for the SCOLE mast. Using two
elements, the resultant model provides 10 beam flexure degrees
of freedom and hence 20 beam modes, most of which are of
very high frequency and well out of the control bandwidth.
The resultant stiff system requires simulation times excessive
for analysis. Thus, we reduce the system to retain 4 beam-flex-
ure degrees of freedom and consequently eight modes by re-
taining the so-called long wavelength dynamics, i.e., we elimi-
nate the angular deformation degrees of freedom. Of these,
four modes are near the control bandwidth (natural frequen-
cies of about 3 rad/s) and the others are outside the bandwidth
(approximately 10 rad/s). For convenience, we define the de-
formation coordinate vector rj = [??/>*hT € (R4. A few compar-
ative simulations with 20 and 8 modes provided no observable
effect.

Table 1 Physical data adapted from Ref. 1

Body
Space station

Mobile base

Upper arm

Lower arm

Length, m
110

1.5

14.3

14.3

Mass, kg
211,258

316.9

3169

3169

Inertia, kg-m2

Jy=2.13Xl0 8

Jz = 880,214.6
Jx = 178.25
Jy = 178.25
Jz = 356.5

Jx = 54,002
jy = 54,002

Jx = 54,002
jy = 54,002

cm location, m

z = 55

B
z=7.15

^ = S
Z=1.15
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B. System Equations
The dynamical equations of motion for the composite sys-

tem including the space station with MRMS have been derived
in terms of Poincare's equations and take the form

" * l "
R

*
r

#32

043

"r({i> o o o o o"
o LI($I) o o o o
0 0 /4x4 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

r [d(Mp) 1 ( 1 [d(Mp) 1<
P L Bg \P 2\_ dq \P

+

-

oil Vi 0 06 0 0
0 cSi 0 Mp - 0 £5 0 ;
0 0 07x7 0 0 03

~06 0 0~
0 Ks 0 ^ = Qp

0 0 03

^43*

(73a)

(73b)

In this study we prescribe the MRMS motion and determine
the corresponding SSF response. The MRMS motion is de-
fined by prescribing the MRMS acceleration and computing
the resultant motion using the kinematics Eq. (73a). Thus, we
have

f
#32

1 0 0
0 1 0
0 0 1

(74a)

(74b)

In all of the subsequent simulations we use the above MRMS
motion model with the accelerations a2z, #32*, #43* prescribed
as constants. There remains a great deal of flexibility in this
model because in addition to specifying the accelerations, the
initial conditions on velocities and configuration variables may
also be prescribed. With the motion of the MRMS prescribed,
the equations governing the response of the space station are
obtained by stripping off the first three equations of Eqs. (73a)
and (73b).

C. Simulation Results
We briefly summarize our simulation experience with the

linear regulator, the PFL regulator, and the adaptive PFL
regulator.

1. Stabilization with Linear Feedback
The linear attitude regulator was designed as a decoupling

controller so that meaningful comparisons can be made with
the PFL designs. Table 2 lists the open- and closed-loop eigen-
values for several different feedback gain values. The open-
loop set consists of 12 zero eigenvalues corresponding to the
rigid body dynamics and an additional eight corresponding to
the platform flexure dynamics. The second column lists the
eigenvalues resulting from a design intended to achieve the
same attitude response as had been achieved in a study of the
rigid body case. Notice that the first 14 eigenvalues correspond
to the "zero dynamics" and remain fixed as the attitude gain
is "detuned" in columns three and four. The zero dynamics
modes include the six rigid body translation modes and eight
cantilevered beam modes of the platform. Although the nom-
inal closed-loop linear system is stable, application of the lin-
ear regulator to the nonlinear simulation with 0.1 rad error in
each Euler angle yields a divergent trajectory. This is due to
destabilizing inertial crosscoupling between the flexible and
rigid body dynamics. Detuning of the closed loop appeared
appropriate to reduce slewing rates and hence platform flex-
ure. Moreover, it is clear that MRMS motion and attitude
regulation performance will not in practice approach the levels
demanded here. For example, we impose an MRMS transla-
tion of 18 m in 60 s, whereas, Wie et al.2 impose a translation
of 5 m in 300 s.

5 10 15
lime (s)

-1020 o 5 10
time (s)

20

r0.05

5 10
time (s)

5 10
time (s)

20

Fig. 4 Effectiveness of combined PFL decoupling and attitude stabi-
lization: the MRMS motion illustrates three curves that overlay each
other, with base translation (m) and two joint angles (rad); similarly all
three Euler angles follow the same trajectory (rad). Notice that plat-
form flexure is completely decoupled from the attitude response al-
though its effects are visible in the uncontrolled translational velocities
(m/s).

Table 2 Open- and closed-loop eigenvalues

Open loop
O2

O2

O2

- 10.4212 ± 10.5963/
- 10.8762 ±10.5876/
- 0.2053 ± 3.32671
- 0.2053 ± 3.3290/

O2

O2

O2

Nominal
closed loop, k

O2

O2

O2

-0.1763±3.3205/
-0.1763±3.3205/
-0.1 364 ±1.6505 /
-0.1 364 ±1.6505 /

-0.4, -0.4
-0.4, -0.4
-0.4, -0.4

Detuned
closed loop, k/8

O2

O2

O2

-0.1763±3.3205i
-0.1763±3.3205/
-0.1364±1.6505i
- 0.1364 ±1.6505i

-0.05, -0.05
-0.05, -0.05
-0.05, -0.05

Translation modes:
unaffected by control torque

Flexure modes:
correspond to zero dynamics

in closed loop

Rotation modes:
attitude is stabilized

by feedback
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Nevertheless, the detuned regulators still produce divergent
trajectories, although they are somewhat less dramatic. The
trajectories corresponding to the last column, i.e., the least
aggressive design, are also divergent. Reduction of the ini-
tial attitude errors to 0.01 rad, however, provides convergent
trajectories. We can conclude that the anticipated stable lin-
ear behavior is indeed observed in very small signal excur-
sions. The significance of the nonlinear interactions that arise
through the inertial couplings is quite striking. It is anticipated
that further detuning would lead to a larger domain of attrac-
tion for the stable equilibrium point, although we have not
confirmed this. Even so, it is clear that the achievable perfor-
mance with linear regulators is severely limited.

2. Decoupling and Stabilization via Partial Feedback Linearization
We first consider attitude regulation with an MRMS maneu-

ver combined with initial attitude errors and with perfect
knowledge of all parameters. The PFL control results are illus-
trated in Fig. 4.

3. Parameter Uncertainty and Adaptive Partial Feedback
Linearization
We begin by considering the effect of a 5% stiffness uncer-

tainty on the performance of the decoupling and stabilizing
PFL controller. Simulation results show that attitude regula-
tion is seriously degraded even with this rather minimal uncer-
tainty. This sensitivity is consistent with our prior observations
about the linear regulator and, in fact, it is likely that sensitiv-
ity would be substantially reduced by detuning of the stabilizer
and reduction of the rate of MRMS motion.

The addition of adaptation to the PFL controller restores its
excellent performance even with 10% stiffness uncertainty.
Somewhat less satisfactory results have been achieved with
15% uncertainty. However, 20% uncertainty results in serious
degradation of performance.

VI. Conclusions
This paper summarizes results of a study of the application

of partial feedback linearization methods to the attitude con-
trol of an articulated spacecraft representative of the Space
Station Freedom with a mobile remote manipulator system
(MRMS). Computer studies contrast linear state feedback atti-
tude stabilizers with partial feedback linearization- (PFL)
based attitude stabilizers. The results presented here confirm
previous observations that MRMS motion can significantly
degrade and even destabilize attitude regulation when linear
controllers are applied to this highly nonlinear dynamical sys-
tem. Our results show that in the flexible case the linear regu-
lator must be significantly detuned to achieve stable responses.
In fact, even with detuning, the attitude errors must be very
small to observe the behavior predicted by linear theory. Pa-
rameter uncertainty is not tolerable. Although the studies con-
ducted to date are far from exhausting, it is clear that PFL
design is promising. It is shown that the PFL controller per-
forms quite well witri perfect knowledge (no parameter uncer-
tainty) both with respect to decoupling and stabilization. How-
ever, performance deteriorates rapidly with even small
parametric uncertainties. Adaptive PFL is shown to restore the

PFL performance with uncertainties of 10%. Controller de-
tuning will certainly improve robustness, and studies that ad-
dress the tradeoff between performance and sensitivity would
be required in any given design situation.

Acknowledgment
This work was supported in part by the MITRE Corpora-

tion.

References
!Mah, H. W., Modi, V. J., Morita, Y., and Yokoto, H., "Dynamics

and Control During Slewing Maneuvers," Acta Automatica, Vol. 19,
No. 2, 1989, pp. 125-143.

2Wie, B., Hunt, A., and Singh, R., "Multibody Interaction Effects
on Space Station Attitude Control and Momentum Management,"
Journal of Guidance, Control, and Dynamics, Vol. 13, No. 6, 1990,
pp. 993-999.

3Bennett, W. H., Kwatny, H. G., LaVigna, C., and Blankenship, G.
L., "Nonlinear and Adaptive Control of Flexible Space Structures,"
Control of Systems With Inexact Dynamic Models, edited by N. Sa-
degh and Y. H. Chen, ASME, New York, 1991, pp. 73-81.

4Rodriguez, G., "Kalman Filtering, Smoothing and Recursive Ro-
bot Arm Forward and Inverse Dynamics," IEEE Journal of Robotics
and Automation, Vol. RA-3, No. 6, 1987, pp. 624-639.

5Jain, A., "Unified Formulation of Dynamics for Serial Rigid
Multibody Systems," Journal of Guidance, Control, and Dynamics,
Vol. 14, No. 3, 1991, pp. 531-542.

6Jain, A., and Rodriguez, G., "Recursive Flexible Multibody Sys-
tem Dynamics Using Spatial Operators," Journal of Guidance, Con-
trol, and Dynamics, Vol. 15, No. 6, 1992, pp. 1453-1466.

7Arnold, V. I., Kozlov, V. V., and Neishtadt, A. I., Mathematical
Aspects of Classical and Celestial Mechanics, Encyclopedia of Mathe-
matical Sciences, edited by V. I. Arnold, Vol. 3, Springer-Verlag,
Heidelberg, 1988.

8Chetaev, N. G., Theoretical Mechanics, Springer-Verlag, New
York, 1989.

9Meirovitch, L., Methods of Analytical Dynamics, McGraw-Hill,
New York, 1970.

10Rosenberg, R. M., Analytical Dynamics of Discrete Systems,
Plenum Press, New York, 1977.

HNeimark, J. I., and Fufaev, N. A., Dynamics of Nonholonomic
Systems, Translations of Mathematical Monographs, Vol. 33, Ameri-
can Mathematical Society, Providence, RI, 1972.

12Kurdila, A., Papastravidis, J. G., and Kamat, M. P., "Role of
Maggis Equations in Computational Methods for Constrained Mul-
tibody Systems," Journal of Guidance, Control, and Dynamics,
Vol. 13, No. 1, 1990, pp. 113-120.

13Kane, T. R., and Levinson, D. A., Dynamics: Theory and Appli-
cations, McGraw-Hill, New York, 1985.

14Chetaev, N. G., "On the Equations of Poincare," PMM(Applied
Mathematics and Mechanics), No. 5, 1941, pp. 253-262.

15Kwatny, H. G., Massimo, F. M., and Bahar, L. Y., "The Gener-
alized Lagrange Equations for Nonlinear RLC Networks," IEEE
Transactions on Circuits and Systems, Vol. CAS-29, No. 4, 1982, pp.
220-233.

16Isidori, A., Nonlinear Control Systems, Springer-Verlag, New
York, 1989.

17Dwyer, T. A. W., "Exact Nonlinear Control of Large Rotational
Maneuvers," IEEE Transactions on Automatic Control, Vol. AC-29,
No. 9, 1984, pp. 539-542.

18Sastry, S. S., and Isidori, A., "Adaptive Control of Linearizable
Systems," IEEE Transactions on Automatic Control, Vol. 34, No. 11,
1989, pp. 1123-1131.


